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Thermal instabilities of a contained fluid are investigated for a fairly general class 
of problems in which the dynamics are dominated by the effects of rotation. In 
systems of constant depth in the direction of the axis of rotation the instability 
develops when the buoyancy forces suffice to overcome the stabilizing effects of 
thermal conduction and of viscous dissipation in the Ekman boundary layers. 
Owing to the Taylor-Proudman theorem, a slight gradient in depth exerts a 
strongly stabilizing influence. The theory is applied to describe the instability of 
the 'lower symmetric regime' in the rotating annulus experiments at  high 
rotation rates. An example of geophysical relevance is the instability of a self- 
gravitating, internally heated, rotating fluid sphere. The results of the pertur- 
bation theory for this problem agree reasonably well with the results of an 
extension of the analysis by Roberts (1968). 

1. Introduction 
Buoyancy-driven convective motions caused by an inhomogeneous distribu- 

tion of heat sources and sinks are a common phenomenon in the fields of geo- 
physics and astrophysics. Their dynamics are often strongly dependent on the 
fact that they occur in rotating systems. In  order to simulate the convective 
phenomena on a laboratory scale, a number of experiments have been undertaken 
in recent years. An example is the rotating annulus experiment, which was 
investigated by Hide (1958) and others. A review of the work on this and related 
topics has been given by Fultz (1961). 

The goal of the experimental studies mot'ivated primarily by meteorological 
problems has been the investigation of baroclinic instabilities. These instabilities 
are driven by the release of gravitational energy, which is available because the 
gravity vector and the temperature gradient of the basic state do not coincide. 
The scalar product between the two vectors, however, has always a negative sign, 
and the stratification is an important ingredient of the dynamics of the baroclinic 
waves. In  contrast, the convective motions considered here occur as instabilities 
of basic states for which the scalar product between temperature gradient and 
gravity vector (including the centrifugal force) is positive. A more direct release 
of gravitational energy is possible. Therefore, the instability occurs at a lower 
value of the destabilizing temperature gradient than is the case of baroclinic 
waves. 

A second distinctive feature of the problems to be discussed here is the property 
that the axis of rotation and the direction of the buoyancy force do not coincide. 
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This property is characteristic for problems of convection in the liquid core of the 
earth and in stars, which have motivated the present study. In  the above- 
mentioned experiments, this situation is usually not realized, except when the 
centrifugal force becomes comparable to gravity. For this reason, the analysis is 
applicable to the annulus experiment only in the case of high rotation rates when 
the potential surfaces are no longer perpendicular to the rotation axis. 

The theory of the convective motions starts from the fact that they can be 
characterized as instabilities of a ‘ symmetric ’ state. The symmetric state is 
described by the solution of the basic equations that reflects all symmetries of the 
physical conditions defining the problem. This is the unique solution for suffi- 
ciently low values of a relevant parameter, such as, for example, the Rayleigh 
pafameter, which is proportional to a characteristic temperature difference and 
inversely proportional to the diffusivities of heat and momentum. In special cases 
the symmetric solution corresponds to a vanishing velocity field. 

When the Rayleigh parameter exceeds a finite critical value, the symmetric 
state becomes unstable. Convective motions appear which are characterized by 
a wavelength in the dimension with respect to which the symmetric state is 
invariant. Instabilities of this kind will be analyzed here on the assumption that 
they can be regardcd as disturbances of infinitesimal amplitude. We shall base 
the discussion on the Boussinesq approximation of the basic equations, and 
restrict it  to the case of a rapidly rotating system, in which the Coriolis force by 
far exceeds the destabilizing component of the buoyancy force. 

The latter restriction allows us to take advantage of two properties of the 
system. First, the Taylor-Proudman theorem applies, since, in nearly stationary 
flow, the Coriolis force can be balanced only by the pressure gradient. The geo- 
strophic balance provides a strong restriction, yet does not determine the dis- 
turbances. For this purpose, buoyancy and viscous forces have to be introduced 
as perturbations. The solvability condition for the linear inhomogeneous pertur- 
bation equation then supplies the necessary information for the complete 
determination of the disturbances and of the critical parameter value at which 
they first become possible. The second property is the fact that in many cases the 
viscous dissipation is localized in the Ekman boundary layers close to the rigid 
walls. The thickness of the Ekman layers is of the order E&L, where L represents 
the depth of the system in the direction of the axis of rotation, and the Ekman 
number E is defined by 

IR is the constant rotation rate of the system and v denotes the kinematic vis- 
cosity. Since E4 is small compared with unity in most cases, solutions can be 
obtained in terms of a boundary-layer approximation. 

The theoretical analysis in 6 2- $5 is intended to exhibit characteristic features 
of the thermal instability, rather than provide a quantitative comparison with 
particular experiments. For this reason the discussion proceeds by avoiding 
lengthy calculations, and by considering the simplest geometry for a particular 
problem. The notation is chosen in such a way that the treatment can be general- 
ized easily to fit more complex problems. 

In 9 2 the thermal instability in an annulus rotating about its vertical axis is 

E = v/C2L2. 
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considered in the case when the outer side wall is maintained at a higher tempera- 
ture than the inner side wall. We first assume that the fluid has a uniform depth. 
The mathematical analysis is similar to the treatment of shear flow instabilities 
in rotating systems (Busse 1968): it was indicated there that a slightly changing 
depth of the fluid has a significant influence on the instability. As an example of 
this effect in the case of thermal instabilities, the annulus with a free surface will 
be considered in 3 3. Since the Taylor-Proudman theorem allows only deviations 
of higher order from the two-dimensional form of the disturbance, the horizontal 
scale of the critical disturbance has to decrease in order to minimize the constraint 
of the changing depth. This tendency is balanced by the increasing importance of 
the viscous forces in the interior of the fluid. The transition of the ‘lower sym- 
metric ’ regime a t  large values of SZ in the annulus experiment of Fowlis & Hide 
(1965) corresponds to this case. 

Rapidly rotating stars and the core of the earth are examples of fluid systems in 
which convective motions subjected to the constraint of a changing depth may 
occur. The thermal instability of a uniformly heated self-gravitating fluid sphere 
has attracted particular attention as a model for convection in the earth core. 
The most detailed analysis of this problem has been givon by Roberts (1968). A 
comparison of Robert’s numerical results with the conclusions of the perturbation 
theory in 0 4 suggests that modes of different symmetry than thost considered by 
Roberts should lead to a lower critical Rayleigh number. For this reason the 
problem is re-analyzed in § 5, with the effect that the results of the exact theory 
and the perturbation theory are found to be in reasonable agreement. 

2. Instabilities in systems of uniform depth 
In  Q 2 a fluid filled annulus which rotates about its axis of symmetry with the 

constant angular velocity Q is considered. The direction of the rotation vector is 
opposite to that of the force of gravity, and is denoted by the unit vector k. We 
shall use the small-gap approximation, i.e. we asume that the distance D between 
the cylindrical side walls is sinall compared to the mean radius r,, of the annulus. 
This permits us to neglect the effects of curvature, and to use a Cartesian system 
of co-ordinates. The fluid in the annular channel is bounded at  top and bottom by 
horizontal rigid boundaries. Accordingly, the depth of the fluid L is uniform. We 
introduce a dimensionless description by using L, Q-l, and (T, - Tl) Q L 3 / D ~  as 
scales for length, time, and temperature, respectively. Tl and T, are the given 
fixed values of the temperature on the inner and the outer wall of the annular 
channel. K is the thermometric conductivity. The Boussinesq equations of 
motion for the velocity vector ? and the heat equation for the temperature 8 are 

V . 8  = 0, (2.2) 
K A  A a *  

-V% = 8.VB-t -9 .  
QL2 at 
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The origin of the Cartesian system of co-ordinates is located in the centre of the 
channel, with the x, y, x co-ordinates in the directions of the unit vectors i, j, k, 
respectively, where i represents the direction of the centrifugal force. 

Since we expect a balance between the buoyancy force and the viscous stresses 
in the Ekman layer, we have introduced the parameter 

a( T, - TI)  Qro L2 R =  - 
K E ~ D  ' ( 2 . 4 )  

which we call the Rayleigh parameter. The viscosity enters this expression in the 
form of the Ekman number E = v / ! Z 2 .  a is the expansion coefficient. The 
definition ( 2 . 4 )  has been motivated by the analogy with the case of convection in 
a layer heated from below. Gravity and kinematic viscosity in the usual definition 
of the Rayleigh number are replaced in expression ( 2 . 4 )  by Q2ro and E&QL-2, 
respectively. I n  adition to  Rand E,  the parameters g/Q2roandK/QL2 appear in the 
equations. No particular symbols have been introduced for them, since they will 
drop out of the final result of 3 2 .  We require only that they satisfy the not very 
restrictive conditions 

The parameter K/QL2 will, in fact, be of order E, unless a fluid with a very small 
Prandtl number 

is considered. By leaving the order of K/QL2 unspecified we include the latter 
possibility. 

Equations (1.1)-( 1.3) are satisfied exactly by the following solution (which is 
asisymmetric, i.e. the y-dependence vanishes) : 

g/Q2ro Q E-4, K/QL2 < E-9. 

P VIK 

( 2 . 5 ~ )  

( 2 . 5 b )  

This solution shows that a purely conductive solution is possible, even though 
gravity and temperature gradient t o  not coincide in contrast to  a non-rotating 
system. I n  a, meteorological context, the velocity field ( 2 . 5 ~ )  is called the thermal 
wind. The solution ( 2 . 5 )  satisfies the boundary condition for the temperature, 

A a$= 0 at z = k;, I 
where top and bottom have been assumed as thermal insulators. The solution 
(2.5) however, does not satisfy the boundary condition for the velocity field, 

It can be assumed, nevertheless, that ( 2 . 5 )  describes the symmetric state cor- 
rectly in the interior of the channel, and that the boundary-layer regions in which 
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the solution has to  be modified become vanishingly small in the limit, when E 
tends to zero. Hunter (1967), extending the earlier work of Robinson (1959), has 
given a detailed analysis to prove this point. He shows that, in the limit 

RELn"r, Dg < 1 ,  

the solution (2.5) is established throughout the interior. In  the case of a rigid top 
surface as assumed in (2.7), the constant c of integration in ( 2 . 5 ~ )  vanishes; it is 
equal to  & in the case of a free surface. 

I n  order t o  analyze the stability of the symmetric state, we superimpose 
disturbances of infinitesimal amplitude on the solution (2.5). By setting 

G = U + v ,  $=0+9, 

we obtain the following equations for v and 9 from (2.1) and (2.3): 

a 
at 

EV2v-Vp-REQ 9 = 2 k x v + U . V v + v . V U + - v ,  (2.9) 

(2.10) 

Since we are interested in the solution of the problem for small values of E4, we 

(2.11) 

and an analogous expansion for 9. We assume that the functions v, describe the 
velocity field in the interior. Close to the boundaries, a boundary-layer modifica- 
tion (b.1.m.) has to  be added to  the interior velocity field. We do not have to 
consider this modification explicitly. It can be shown (see Greenspan 1968) that 
the total velocity field satisfies the boundary condition v = 0 (at least to  order 
Ei), when the interior velocity field satisfies the boundary condition, 

introduce an  expansion in powers of EB for v, 

v = v,+E4v,+ ...+ b.l.m., 

(2.12) 

n denotes the normal unit vector of the bounding surface. The expression (2.12) 
diverges when the boundary is parallel to the axis of rotation. The thickness of 
the viscous boundary layer formed in this case is of order Ef.  Hence, its contribu- 
tion to the dissipation of the system is negligible compared to  the dissipation in 
the Ekman layers. This justifies the use of the boundary condition, 

n . v  = 0, (2.13) 
a t  the side walls. 

The derivation of the boundary condition (2.12) for the velocity field depends 
on the property that the time-dependence of the velocity field is small compared 
with 1, if not vanishing. The following analysis will be restricted t o  disturbances 
satisfying this property. Accordingly, we assume a time-dependence of the form, 

exp {Ebt). (2.14) 
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The discussion of disturbances with a time-dependence of order one is given in the 
appendix. It is shown there that the corresponding instabilities, which in lowest 
order can be described as inertial oscillations, lead in general to  higher critical 
values of the Rayleigh parameter. 

By introducing the expansion (2.11) in (2.9) we obtain as basic balance 

2 k ~ ~ , + G p ~  = 0, 

v . v o  = 0. 
(2.15) 

The general solution of these equations satisfying the condition k . v 0  = 0 at  

(2.16) z = & $ i s  

where po is an arbitrary function of x and y and independent of z .  The boundary 
condition (2.13) at the side walls requires that po vanishes a t  x = & $D/L. 

In  order t o  obtain additional information about p,, we have to  consider the 
equations for vl, 

2k x v1 + Vpl = - R{i - k(g/Q2r,)) 9, - E-iU.  Gv, - no, 

V, = k x Vip,, 

(2.17) 

V.Vl = 0. (2.18) 

Equations (2.17), (2.18), together with the boundary condition following from 
(2.12), represent a linear inhomogeneous boundary-value problem. The necessary 
and sufficient condition for the existence of a solution of the problem is that the 
inhomogeneity is orthogonal to  each solution of the adjoint homogeneous 
problem. The homogeneous part of (2.17) represents an antisymmetric operator. 
Hence, the manifold of solutions of the adjoint homogeneous problem is identical 
with the manifold of solutions given by 

V* = k x V$p*, (2.19) 

where p* satisfies the same constraints asp , .  Multiplication of (2.17) by (2.19), 
and integration over the contained fluid, yields 

vlVp*dV = k x  Vip,". J(v,)dV. (2.20) s s 
J(v,) stands for the right-hand side of (2.17). By transforming the left-hand side 
of (2.20) into a surface integral, and by partial integration of the right-hand side, 
we obtain 

- [ /p*k .Vxv ,dady  = p* $ V . k x  J(vo)dz dxdy, (2.21) IS( s 1 
where k.v,  has been eliminated according to  the boundary condition (2.12). 
Since this solvability condition has to be satisfied for arbitrary functions p* of x 
and y vanishing at x = 5 $D/L,  the integrands on both sides of (2.21) must be 
equal, k .  V x (V x kip,) = gV . k x !J(v,)~z, 

= - 4Rk x i .  V!8,dz - i d .  k x vo. (2.22) 

I n  the second line of this relation, some terms of J(v,) have disappeared, 
because they are parallel to  k or their z-average vanishes. I n  order to  determine 
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the critical value of the Rayleigh parameter, we have to solve (2.22) in the case 
when the real part of r~ vanishes. Since there is no term which could lead to an 
imaginary part, (T can be replaced by zero. To eliminate 9, from (2.22), we have to 
return to the heat equation (%lo), which in lowest order reduces to 

V29, = i . v,. (2.23) 

The boundary condition (2.6), and the fact that 9, does not depend on z according 
to (2.23), allow us to drop the integration symbol in (2.22) and to obtain as 

a 2  
equation for po, 

The operator A2 is defined by 

A&, = - &R -zpo. 
aY 

a 2  a= 
ax ay2 

A2 -2+-. 

The boundary conditions, 

(2.24) 

a 2  1 D  p ,  = a22po = 0 at x = k--, 
2 L  

are satisfied by the following solution of (2.24): 

pa  = exp (iay) cos 7r(L/D)x, (2.25) 

with the corresponding eigenvalue, 

R = ~[{ (L /D)~T}~  + a2I2/a2. (2.26) 

The minimum R, of R as a function of a, 
2 

R,= 8(;n) , (2.27) 

represents the critical value a t  which the symmetric state (2.5) becomes unstable. 
We do not know of experimental observations which correspond to the 

theoretical problem discussed in $ 2 .  Data on the transition from the symmetric 
regime in an annulus are usually obtained in the case of a free fluid surface. The 
fact that this surface is inclined according to the relative magnitude of centri- 
fugal force andgravity changes the problem dramatically. We shall return to this 
problem at the end of Q 3. 

For completeness, we mention that we have assumed throughout $ 2 that D / L  
is of order one, i.e. that the inequalities, 

EB < LID < E-4, (2.28) 

are satisfied. The boundary-layer method breaks down if the first of these relations 
is violated. I n  the case of a very tall annulus, for which the second relation of 
(2.28) no longer holds, the problem becomes mathematically identical with the 
problem of BBnard convection in a layer heated from below. The centrifugal 
force replaces gravity in this case, and the effect of the Coriolis force on the critical 
value of the Rayleigh number vanishes. 

Although the analysis of $ 2 has been restricted to a system in which top and 
bottom surface are perpendicular to the axis of rotation, it can be regarded as 
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representative of general symmetric systems of constant depth. We refer to the 
analogous case of shear flow instability (Busse 1968)) where it has been shown that. 
the results are essentially identical when the distance between the two parallel 
surfaces is used in place of L. 

3. Instabilities in systems of slightly changing depth 
(i) It is known from other theories of rotating systems (see Greenspan 1968) 

that the geostrophic modes, which are stationary in a system of constant depth, 
correspond to the slowly drifting Rossby waves in a system with slightly changing 
depth. We expect accordingly that, in the latter kind of system, the imaginary 
part of r does not vanish for the critical disturbance. For simplicity we consider 
the same geometry as in $ 2 ,  with the difference that the normal vectors nT and 
nB of the top and bottom surface are slightly inclined with respect to the axis of 
rotation. The modification due to this effect is small. The lowest order of the 
solution is still governed by (2 .15) .  Since the solution (2 .16)  does not completely 
satisfy the boundary condition n. vo at the top and bottom, the term 

-nx  k.Vpo/2 

has to be added to the inhomogeneous part of the boundary condition for n . vl. 
In  place of (2 .24 )  we obtain 

(3.1) 

where is proportional to the change in depth, 

7 = &i.(nT+nB), (3.2) 

and r has been set equal to iw. 
Equation (3 .1 )  and the corresponding boundary conditions are satisfied by 

solutions of the form (2.25)) for which we obtain the following dispersion relation 

(3 .3 )  
for w :  

With this relation inserted, the real part of ( 3 . 1 )  yields 

w(2PE-f  + (L7r/D)2 + a2) = - 47E-ta.  

as expression for the eigenvalue R. 
The critical Rayleigh parameter Re is determined by the minimum of (3 .4 )  as a 

function of a. We note, without going into a detailed evaluation of (3 .4 ) ,  that a, 
will be of order one as long as the relation 

7 < EiPB (3.5) 

holds. The corresponding value Re will be of the same order of magnitude, as in 
the case of constant depth. The situation becomes more interesting when the 
relation (3 .5 )  is not satisfied. In  this case, the critical wave-number increases, and 
the viscous dissipation in the interior becomes important. The following second 
part of $ 3  discusses this problem. 
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(ii) We consider the case when 7 is large compared with ,/E yet still small 
compared with 1 .  It is appropriate in this case to use 7, in place of JE,  as the 
expansion parameter in (2.9), and to introduce 

R* = RE417 (3.6) 

as relevant Rayleigh parameter. The basic symmetric state will not be influenced 
very much by the changing depth. Thus, the analysis of the problem follows the 
steps described in $ 2 .  Since we are interested in the case when the viscous forces 
in the interior become important, we neglect the dissipation in the Ekman layer 
for simplicity. The case when both dissipative effects are comparable can be 
treated in an analogous way. Accordingly, the solvability condition yields the 
following eigenvalue problem in place of (2.24): 

(3.7) 

The time-dependence of the marginal disturbance has been assumed in the form 
exp{ip*t}. The y-dependence will be assumed again in the form exp{iay}. 
Because no assumptions about the horizontal scale have been made a priori, all 
terms which may possibly become relevant in (3.7) have to be included. The 
consistency of the expansion has to be checked after the horizontal scale has been 
determined. 

Since the viscous stresses in the interior have been taken into account the 
vanishing of the parallel component of the velocity at  the side walls has to be 
required. For this reason, the x-dependence of the pressurep will differ from that 
assumed in (2.25). We expect, however, that the x-dependence will be negligible 
in comparison with the y-dependence in the case of sufficiently large values 7 in 
which we are interested. This expectation suggests that we should consider (3.7) 
as an algebraic equation with - a2 in place of the operator A,. 

The imaginary part yields the dispersion relation, 

(1  + P)a4w* + 4a3 = 0; (3.8) 

and the real part yields the following expression for R*: 

The critical values a, and RZ are obtained by minimizing the right-hand side in 
this relation: 

(3.10) 

(3.11) 

The result is consistent with the fact that it was derived by a perturbation 
analysis, starting with (2.15) as basic balance as long as J E  and 7 are small 
compared with 1. The dissipation in the Ekman layers is negligible if a2 is large 

yP  9 E* (3.12) compared to E-3, or if 

29 F L M  44 
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holds. That the x-dependence is in fact small compared with the y-dependence 
can be tested by assuming a dependence of the form cos ayx. It turns out that the 
minimum of R* is reached for y-f 0, which verifies our expectation. 

The results of the two extreme cases treated in 9 3, in which the viscous dissipa- 
tion was located either in the Ekman layer or in the interior, are similar. The 
general case, in which both effects are present, will be more complex merely in the 
computation of the critical Rayleigh number. Owing to  the change in depth, the 
instabilities always have the form of Rossby waves with the characteristic 
property that they propagate in the direction of either the positive or the nega- 
tive y co-ordinate depending on the sign of 7. 

One of the motivations for the analysis in 9 3 was to give a description of the 
instability in the case when the fluid in the annulus has a free surface. That the 
centrifugal force is responsible for the transition from the lower symmetric 
regime at  large rotation rates is best seen in the paper by Fultz (1961), who 
compares the case of an annulus cooled from the inside and heat.ed from the 
outside with the reverse case. The change in depth in this problem is 

(3.13) 

and the criterion R* > R,* for the instability of the symmetric state can be written 
in the form, 

(3.14) 

where A p  represents the density difference of the fluid between the side walls. 
The parameter Ap/pR2 has been introduced by Hide as one of the experimentally 
relevant parameters. The data obtained by Fowlis & Hide (1965), and plotted in 
terms of this parameter, show in fact that the transition from the lower symmetric 
regime becomes independent of R for sufficiently high values of R. The evaluation 
of the right side of (3.14) yields 6.4 x when the parameters of the experiment 
are inserted. The measured value of the transiton is 11.8 x Because of the 
constraint of the side walls and the dissipation in the Ekman layer, the symmetric 
rbgime is more stable than suggested by the theory. For the same reason, the 
observed value of the wave-number is only about half the predicted value 
(3.10). 

4. Thermal instability of a rotating heated fluid sphere 
Among the problems of thermal instability the case of the sdf-gravitating 

uniformily heated, rotating fluid sphere has particular geophysical relevance. 
It can serve as a model of the earth core in which, hypothetically, enough radio- 
active material is homogeneously distributed to cause a temperature gradient 
which exceeds the adiabatic lapse rate. Earlier studies of the problem by Bisshopp 
& Niiler (1965) and by Roberts (1965), which have concentrated on the axisym- 
metric case, have been oxtended recently by Roberts (1968) to the general non- 
axisymmetric case. The justification for the following analysis of the problem 
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is the relative simp1icit.y of the perturbation approach, and the opportunity for 
a comparison with exact numerical results. 

Although at  first sight the problem seems to be quite different from the annulus 
problem, the mathematial discussion will in fact turn out as an application of 
the analysis in § 3. The component of the gravity force perpendicular to the axis 
of rotation replaces the centrifugal force, which is negligible in the earth's core 
as far as the present problem is concerned. Because the distribution of the heat 
sources and the properties of the fluid are homogeneous, the equations allow a 
static solution with the temperature gradient and gravity described by - pr and 
-gr respectively. r is the position vector relative to the centre of the sphere. 
We use the radius ro of the sphere as length scale and ,!?r;Q/K as scale for the 
temperature. In  the dimensionless description, a disturbance of the static state 
is governed by the equations, 

EV2v - Vp -t- &r8 = 2k x v + (a/at)v, 
v . v  = 0, 

fir: a 
K at 

V28+r.v = --8, 

where the Rayleigh parameter 2 is defined by 

The constraining effect of the change in depth in the direction of the axis of 
rotation, as well as the gravity force and the basic temperature gradient, depend 
on the distance from the axis. This spatial dependence does not complicate the 
problem, however, because a mathematical analysis in terms of a 'small gap' 
approximation can be used. Although the small gap geometry is not enforced by 
side walls, as in the annulus problem, it will notwithstanding be realized, owing 
to the fact that the scale of the instability is small compared with 1, as in the case 
treated in $ 3  (ii). 

The critical Rayleigh parameter B,, which corresponds to yR,*, depends, 
according to (3.11), on the $rd power of the change in depth. Since the latter 
increases less rapidly than the buoyancy force at  small distances from the axis, 
and more rapidly at  larger ones, we expec~ that the lowest value of the Rayleigh 
parameter will be attained at some finite distance from the axis. We assume, for 
the moment, that the change in depth at this distance is still small compared with 
1, so that the analysis of 3 3 can be applied directly. We denote the distance from 
the axis by sine, and obtain in place of equation (3.71, after multiplication by 7, 

We have taken into account the fact that the actual depth of the co-axial 
annulus in the sphere is 2 COB 8, instead of 1 as before, and that the surface area 
exceeds its projection on the x, y-plane by cos-le. po is assumed in the form 

po = f(z) exp [i(ay + at)]. (4.6) 
29-2 
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Neglect of the x-dependence in (4.5) then leads to the following relations by 
analogy to  (3.10), (3.11), and (3.8): 

(4.7) 

(4.9) 

We have used tho index 0 instead of c t o  indicate that the critical value of the 
Rayleigh parameter still has to  be determined by minimizing (4.8) with respect to 
sin 19. The maximum of sin 8 c0s4 8 occurs at sin8, = 1/45 corresponding to  an 

(4.10) 
angle 0, z 26.6". 

Hence, the instability will first set in close to  a cylindrical surface, which inter- 
sects the sphere a t  a latitude of about 63". The critical values of (4.7)-(4.9) are 

(4.11) 

(4.12) 

(4.13) 

To illustrate the result a qualitative sketch of the convective motions has been 
drawn in figure 1. 

The change in depth a t  the critical latitude is not really small compared with 1, 
and the assumption on which this analysis was based is not well satisfied. Yet, 
in the analogous problem of shear flow instabilities (Busse 1968), it was found in a 
special case that the result of the perturbation theory agrees with the exact result 
to within a few percent for a change in depth corresponding t o  (4.10). The present 
problem, too, offers the opportunity for a comparison with the result. of an exact 
treatment of the equations. We shall find that (4.11)-(4.13) yield a reasonable 
approximation of the numerical results. 

We have mentioned before that a comprehensive solution for the problem of 
the thermal instability in a rotating sphere was obtained by Roberts (1968) ; 
the results stated aboveresembleRoberts'sresults. Thedependence on thePrandtl 
number is qualitatively the same and the characteristic property of (4.10) that 
the critical latitude is independent of the PrandtJ number is closely approached 
by the numerical results. Serious discrepancies are found when the critical 
Rayleigh numbers and bhe critical wave-numbers are compared quantitatively. 
The origin for this discrepancy can be traced to  the fact that i t  has been assumed 
by Roberts that  the most unstable mode corresponds to  s disturbance of the 
temperature field which vanishes in the equatorial plane. It seems unlikely on 
physical grounds that a mode with this property should yield the critical Rayleigh 
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number unless the analysis is restricted to the axisymmetric case. For this reason 
Roberts's analysis is repeated in 9 5 for modes which have the same symmetry as 
the perturbation solution. 

'1 
FIGURE 1. Qualitative sketch of the marginally unstable convective motions in an internally 

heated rote ting sphere. 

5. Comparison with the general asymptotic theory 
In  the case of a finite change in depth, the velocity component parallel to the 

axis of rotation is no longer negligible in comparison with the perpendicular 
components. In order to analyse the basic equations (4.1)-(4.3), we introduce, 
as a representation of the solenoidal vector field v, 

v = V x ( V x k v ) + V x k w .  

The elimination of the pressure from (4.1) yields the following equations for v, w 
and 9, equivalent to the system (4.1)-(4.3): 

(5.1) 1 
(EV2-iO)V2A2v-2k.VA,w-gk. ( rV29-V(r .V+ 1)8) = 0, 

(EV2-iG)A2w+2k.VA,v+&kxr.V9 = 0, 

(V2-PE-liO)9-r.Vx(kxV)v+kxr.Vw = 0. 

As before, the operator A, is used as abbreviation for the operator V2 - (kV2). 
In  the limit of high rotation rates, it  can be assumed that the characteristic scale 
of the solution in the p- and $-directions of a cylindrical system of co-ordinates 



454 F.  H .  Busse 

(p, $, z )  is small compared with the scale in the z-direction parallel to the axis of 
rotation. Following Roberts (1968) analysis, we assume a solution of the form, 

v = exp (im$ + iht) J, (up) F(z) .  
Accordingly, the operator A2 in (5 .1 )  can be replaced by the constant -a2. 
The elimination of w and 9 yields as equation for P(z) 

[ ( E a 2 + i h ) ( m 2 + a 2 z 2 ) - 2 i m ]  

(5 .2 )  

B 
4(a2 + PE-Iii3) 

20 

10 

0.5 
Distance from axis 

1 .o 

FIGURE 2. The dependence of the Rayleigh number 8, the wave-number a, and the fre- 
quency &^on the distance from the axis of rotation in the case P = 1. Curves I, 11, 111 
describe RE), 2aE4, and - &E-* respectively. The dashed lines correspond to (4.8), (4.7), 
(4.9). 

The boundary condition v . r = 0 on the surface of the sphere can be expressed 

(5 .3)  
by 

Here, the fact has been used that for large m, Jm(ap)/Jm(m) differs from zero 
essentially only in the neighbourhood of p = m/a. The eigenvalue problem given 
by ( 5 . 2 ) )  (5 .3)  is identical with the problem described by (7.10)-(7.12) and (7.23) 
in Roberts (1968). The problem has solutions F(z) ,  which are either symmetric or 
antisymmetric with respect to the z-dependence. Roberts assumed that the lowest 

E(a2 + iw)a%F + im2F' = 0 for z = (1 - p2)&. 
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I 

0.1 

0. I 1 10 
P 

FIGURE 3. Dependence of the critical Rayleigh number, wave-number, and frequency upon 
the Prandtl number. Curves I, 11, I11 describe fi,E*, a,Eh, and - &E-& respectively. The 
dashed curves correspond to (4.11), (4.12), (4.13). 

0.5 

0.5 1 -0 
zlcos 9, 

FIGURE 4. The real part, (I) y d  the imaginary part (multiplied by 10) of P(z/cos 0,) for 
R = R, are plotted in the case P = 1. 
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value ofthe Rayleigh parameter corresponds to the symmetric case. The following 
results, however, obtained for an antisymmetric function F(z) ,  yield a lower 
eigenvalue 8. In  figure 2 the minimum of l? with respect to the dependence on 
a has been plotted as a function of p = sin 6 in the case P = 1.  A comparison with 
(4.8) shows that the numerical result exceeds the result of the perturbation theory 
by a factor of about two. This discrepancy is caused by the fact that theconditions, 
under which the perturbation theory has been derived, are not satisfied, even for 
small values of p, when the change in depth in the z-direction becomes small. 
The component of the buoyancy force perpendicular to the axis of rotation 
vanishes in this case like p2, while the parallel component remains of order 1. 
This fact violates the condition under which the perturbation theory has been 
derived, since the ratio between the perpendicular and the parallel component 
should be large compared to the perturbation parameter p. 

P 

0.025 
0.1 
0.3 
0.6 
1 
1.5 
3 

10 
40 

ac(E12)f 
0.223 
0.343 
0.465 
0.544 
0.6003 
0.643 
0.709 
0.785 
0.817 

&El 16)+ 
0.0525 
0.3151 
0.149 
2.283 
3.382 
4.253 
5.396 
6.265 
6.520 

sin 8, 
0.519 
0.513 
0.508 
0.5005 
0.5004 
0.504 
0.521 
0.550 
0.565 

( ,(4E)-+ 

- 2.84 
- 1.65 
- 1.008 
- 0.645 
- 0.4362 
- 0.303 
- 0.1513 
- 0.0423 
- 0~0100 

TABLE 1. Dependence of the critical parameters on the Prandtl number 

The rather close agreement, however, between the approximate expressions 
(4.7) and (4.9) for the wave-number and a frequency, and the numerical results, 
suggests that the perturbation theory yields the correct dynamic description of 
the convection mode. This aspect is emphasized in figure 3, in which the critical 
values $, a,, and &, corresponding to the absolute minimum of 2, have been 
plotted as functions of the Prandtl number. Numerical values are given in table 1 
in a form in which they can be directIy compared with the resuIts for the even 
mode given by Roberts. The comparison shows that the critical Rayleigh 
numbers for the first even mode exceed the values of the first odd mode by a 
factor of about 4. T t  is worth mentioning that the even mode propagates east- 
ward, as well as the odd mode, according to the negative sign of &, which was not 
indicated by Roberts. The critical latitude, at which the Rayleigh number 
reaches its critical value, is nearly independent of P according to table 1, in close 
agreement with the value (4.10). 

The perturbation results can be derived directly from (5.1)) if w is assumed 
x-independent, and if D is assumed proportional to z. The coefficient in the latter 
case has to be determined by the boundary condition. A nearly linear dependence 
of F(z)  is exhibited by the numerical computations as shown in figure 4 for the 
critical mode in the case P = 1. 

Although the perturbation results underestimate the Rayleigh number, the 
agreement with the numerical results is remarkable, considering the simple 
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derivation of (4.7)-(4.13). This suggests that the perturbation theory has a wider 
range of application than can be expected from its derivation. Physically, the 
process described by the perturbation theory can be interpreted as the stretching 
and compressing of vortex lines parallel to  the axis of rotation, as in the theory of 
Rossby waves. Filaments changing their distance from the axis acquire vorticity 
relative to the rotating system. The interaction of the vortices then causes the 
eastward motion of the convection pattern. The qualitative agreement with the 
exact treatment indicates that this picture gives the correct description for the 
dynamical constraint governing convection in a rotating fluid sphere. 

6.  Concluding remarks 
A common feature of the problems discussed here is the existence of a tempera- 

ture gradient and a component of the buoyancy force in the direction perpendi- 
cular to the axis of rotation. From this point of view, the well-known B6nard 
problem of a horizontal fluid layer heated from below, and rotating about a 
vertical axis, appears as a somewhat singular case. The perturbation method 
employed here fails in this particular case, because the buoyancy force coincides 
with the axis of rotation. Viscous dissipation becomes necessary for the onset of 
stationary convection and enters the basic balance in order to overcome the 
constraint of the Taylor-Proudman theorem. A detailed analysis of the problem 
is given in Chandrasekhar’s (1961) treatise. In the problem of the heated fluid 
sphere considered in 394 and 5 both kinds of instability mechanism are possible. 
Roberts (1968) has shown that the critical Rayleigh number for the ‘BAnard’ 
mechanism exceeds the value (4.12). He has also shown that the same fact holds 
for instabilities in the form of inertial oscillations which have lower critical 
Rayleigh numbers than the stationary axisymmetric instabilities at  sufficient 
low Prandtl numbers. 

A particular property of the instabilities in the form of Rossby waves in 
contrast to the stationary modes considered in § 2 is the fact that their non-linear 
interaction can generate a mean flow in the form of a differential rotation. This 
finite amplitude property is of importance for astrophysical and geophysical 
applications and will need special consideration. The relation problem of dif- 
ferential rotation induced by convection in a spherical shell has been discussed in 
another paper (Busse 1970). 

The effect of rotation on buoyancy driven instabilities is always stabilizing in 
contrast to shear flow instabilities, for instance. The analysis of $9 2-5 has shown 
the inhibiting effect of the viscous dissipation in the Ekman layers and of the 
change in depth of the system in the direction of the axis of rotation. The viscous 
dissipation in the interior plays a destabilizing role, since it permits the convec- 
tion to balance the constraint of the changing depth. A detailed experimental 
investigation of the problem is still lacking, although the use of the centrifugal 
force offers a convenient possibility for a buoyancy force in a rotating system. 
Experiments with an rotating annulus would, in addition, have the advantage of 
providing a model for convection in the earth’s core, owing to the close analogy 
between the two problems suggested by the theory. 
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Appendix. Disturbances in the form of inertial oscillations 

bances governed by 
In  constrast to the previous analysis, we consider in this appendix distur- 

- 

v.v,  = 0, 

2k x V, + Vpo + iA,v, = 

as basic balance in place of (2.15).  A, is a real number representing the frequency 
of oscillation. The boundary condition, 

n.v, = 0 (A21 

on the surfaces x = +D/L, imposes a strong constraint, with the 
consequence that the manifold of solutions of (A 1 )  is discrete with respect to the 
x-dependence as well as to the z-dependence. It is shown in Greenspan (1968) that 
the velocity vector v, can be expressed by the pressure, 

(l-*AE)v, = QkxVp i h V p o + - k ( k . V p o ) .  

Equations (A I), together with the boundary condition (A 2 ) ,  yield the Poincark 

Q and x = 

(A 3) 
i 

O- 4 A0 

eigenvalue problem in terms of the pressure, 

with 

and - a a 1D 
A,-p0+2i-po = 0 at x = +-- ax aY 2 L  

as boundary conditions.Equation (A 4 )  admits solutions of the form, 

cos pmx 
(sin ,urn 2) 

p ,  = exp [ i ( q  + hot)] cos nr(x + Q) 

where the upper function corresponds to an odd integer m and the lower function 
to an even integer m. 

The condition (A 5 )  is satisfied by this class of solutions, and (A 6 )  yields the 
following equations for the determination of ,urn: 

D 
A , , ~ ~ s i n p ~ - - 2 a c o s ~ ~ -  . D  = 0 for odd m, 

2L 2L 

D D 
2L 2L 

(A 8 4  

(A s b )  - hoprn cos ,urn - - 2a sinp, - = 0 for even m. 

The frequency A, is a function of the integers m and n, and of the wave-number a, 
and varies between - 2 and + 2 :  

A, = & 2n?r/[(nn)2+a2+p3. (A 9 )  
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The equation of order Et for v1 has the following form: 

459 

2k x vl+ Vpl+ ih,vl = - R 9,- E-t(U.Vv,+ v,. VU) - iAlv,. 

(A 10) 

For the frequency h an expansion analogous to (2.11) has been assumed. The 
critical value of the Rayleigh parameter for the onset of oscillations is determined 
as the lowest value of R for which solutions of (A 10) are possible with a real value 
of A,. By multiplying (A 10) with vO+, which is the complex conjugate of v,, and 
subsequent integration, the following solvability condition for (A 10) is obtained: 

(A 11) 

We haveused the fact that v$ satisfies (A 1) with - A, in place of A,. Theleft-hand 
side of (A 11) is determined by the inhomogeneous boundary condition for n . v1 
which, according to Greenspan (1968, formula (2.9.14)), leads to a contribution 
only at  the vertical side walls in the problem considered here: 

$p$n.v,dE: = 2 4 1 s  Ik.v,121h,l~(1 +ih,/Ih,l)dydzIz=D12L. (A 12) 

On the right-hand side of (A 11) a number of terms vanish. The z-integration over 
such terms as zv; . V, and v,. kk x vof gives zero, because the vertical and the hori- 
zontal component of the velocity field have opposib symmetry with the respect 
to the z-dependence, according to (A 3) and (A 7). The heat equation, 

QL2 
Aa0 = i.v,+ih,--- 9,, 

K 

shows that 9, has the same symmetry as the x-component of the velocity. Hence, 
the contribution of the gravity term, k.v$8,, vanishes as well. The solution of 
(A 13) satisfying the boundary conditions (2.6) is given, according to (A 7), by 

The evaluation of the imaginary parts of (A 11) and (A 12) lead to a relation for A, 
which is not of interest at the moment. The evaluation of the real parts yields the 
following expression for R: 
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where the upper sign corresponds to an odd, the lower sign to an even, integer m. 
Using (A 9) we can rewrite relation (A 15) as 

(A 16) 

The first term on the right-hand side resembles (2.26) in the case when the Prandtl 
number is set to zero. In  most physical situakions, E-lP will be large compared 
with one, and the expression (A 16) will exceed the critical value (2.27) for any 
choice of the parameter n, m, and a. Only if LID and the Prandtl number are so 
small that E-2P2L/D becomes of the order unity may (A 16) yield lower values 
than (2.27). 

In  this case, however, the stabilizing influence of the interior dissipation will not 
he negligible. Hence, we conclude that for all practical purposes the disturbances 
in the form of inertial oscillations can be disregarded as possible modes of 
instability. 
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